Home About TRY Data Portal Feedback Registration


Quantifying and scaling global plant trait diversity

TRY is a network of vegetation scientists headed by
Future Earth, the Max Planck Institute for Biogeochemistry, and iDiv
providing free and open access to plant trait data.

Database version 5 online (2019-03-26)
11,850,781 trait records
279,875 plant taxa
214 publications

News

Paper published (2019-04-04)
Moradi and Oldeland: Climatic stress drives plant functional diversity in the Alborz Mountains, Iran. Ecological Research (link)

Activity Report (2019-04-01)
In March 2019, TRY vs. 5 went online. Furthermore, TRY received 188 requests and released 19.7 million trait data for 153 requests; 2 new publications were reported. This brings the totals to 5994 received requests, 581 million trait records released for 4994 requests, and 216 recorded publications. (link)

Contribute new datasets for TRY version 6 (2019-03-28)
We are now inviting new datasets for TRY version 6. All contributors of datasets contributed by July 1, 2019 will be offered authorship in a publication to be submitted to Global Change Biology, which is supposed to replace Kattge et al. 2011 as reference for the TRY database. Please upload your dataset(s) at: https://www.try-db.org/TryWeb/Submission.php (link)

TRY Version 5 Online (2019-03-26)
TRY Version 5 is online: 50 % more traits and species (11.8 million and 280,000, resp.); open access (CC BY). (link)

Paper published (2018-11-21)
Jimenez-Rodríguez et al.: Structural and functional traits predict short term response of tropical dry forests to a high intensity hurricane. Forest Ecology and Management. (link)

News Archive

Follow TRY


TRY uses Google Analytics

TRY Database version 5 is online - Invitation to contribute new datasets for TRY version 6

2019-03-28
__Version 5 of the TRY Database has been released on March 26, 2019. The number of trait records has increased from about 7 to 12 million, the number of species from about 148000 to 280000. Trait data are now publicly available under a CC BY license. However, access may be restricted temporarily on request, normally for up to years, until data are published in the scientific literature. We are now inviting new datasets for TRY version 6. All contributors of datasets contributed by July 1, 2019 will be offered authorship in a publication to be submitted to Global Change Biology, which is supposed to replace Kattge et al. 2011 as reference for the TRY database. Please upload your dataset(s) at: https://www.try-db.org/TryWeb/Submission.php
(link)

International Summer School on Plant Traits in Porquerolles (France), 19-24 May 2019

2019-02-27
__Between 19 - 24 May 2019 CNRS/CEFE (Montpellier) offers a Summer School on Functional Traits on the island of Porquerolles, France. The course includes lectures from international speakers (e.g. Eric Garnier, Bill Shipley, Monique Weemstra et al.) on various trait-related topics, and field work exercises on trait measurements with a focus on plant traits. The course is open to PhD students, postdocs and permanent staff. The registration costs (see link) include meals and accommodation. Application is open at: https://framaforms.org/application-to-the-international-trait-school-porquerolles-france-19-24-may-2019-1548263189. The deadline of application is 28 March 2019.
(link)

Plant Traits at the European Geosciences Union (EGU) General Assembly 2019

2019-02-22
__For the upcoming General Assembly of the European Geosciences Union (EGU), 7-12 April 2019 in Vienna, we have organized a session on "Plant traits, adaptation and biogeochemical cycles – from measurements to models" (Conveners: Jens Kattge, Han Wang, Michael Bahn, Oskar Franklin). The session will be on Thursday 11 April, with poster presentations in the morning and oral presentations in the afternoon.
(link)

Global trait–environment relationships of plant communities

2018-12-09
__Plant functional traits directly affect ecosystem functions. At the species level, trait combinations depend on trade-offs representing different ecological strategies, but at the community level trait combinations are expected to be decoupled from these trade-offs because different strategies can facilitate co-existence within communities. A key question is to what extent community-level trait composition is globally filtered and how well it is related to global versus local environmental drivers. Here, the authors perform a global, plot-level analysis of trait–environment relationships, using a database with more than 1.1 million vegetation plots and 26,632 plant species with trait information. Although the authors find a strong filtering of 17 functional traits, similar climate conditions support communities differing greatly in mean trait values. The results indicate that, at fine spatial grain, macro-environmental drivers are much less important for functional trait composition than has been assumed from floristic analyses of large grid cells. Instead, trait combinations seem to be predominantly filtered by local-scale factors such as disturbance, soil conditions, niche partitioning and biotic interactions. (Bruelheide et al. 2018 Nature Ecology and Evolution)
(link)

A methodology to derive global maps of leaf traits using remote sensing and climate data

2018-10-01
__This paper introduces a modular processing chain to derive global high-resolution maps of leaf traits. The paper presents global maps at 500 m resolution of specific leaf area, leaf dry matter content, leaf nitrogen and phosphorus content per dry mass, and leaf nitrogen/phosphorus ratio. The processing chain exploits machine learning techniques along with optical remote sensing data (MODIS/Landsat) and climate data for gap filling and up-scaling of in-situ measured leaf traits. (Moreno-Martinez et al. 2018 Remote Sensing of Environment)
(link)

Plant functional trait change across a warming tundra biome

2018-10-01
__Until now, the Arctic tundra has been the domain of low-growing grasses and dwarf shrubs. Defying the harsh conditions, these plants huddle close to the ground and often grow only a few centimeters high. But new, taller plant species have been slowly taking over this chilly neighborhood, report an international group of nearly 130 biologists led by scientists from the German Senckenberg Biodiversity and Climate Research Centre and the German Centre for Integrative Biodiversity Research (iDiv) today in Nature. This has led to an overall increase in the height of tundra plant communities over the past three decades. (Bjorkman et al. 2018 Nature)
(link)

Late Quaternary climate legacies in contemporary plant functional composition

2018-07-30
__Climate may determine functional composition if there is variation in the rates of immigration and exclusion linked to functional traits. The authors show strong Pleistocene legacies on the contemporary functional composition in the New World plant assemblages consistent with slow community assembly processes. (Blonder et al. 2018 Global Change Biology)
(link)

AGU 2018 Session: Plant Traits, Biogeochemical Cycles and Optimality Driven Model Development (B11E posters, B13D oral)

2018-07-23
__A session on plant traits at the Fall Meeting of the American Geophysical Union (AGU) 10-14 Dec 2018 in Washington, D.C., titled: "Plant Traits, Biogeochemical Cycles and Optimality Driven Model Development". Plant traits extend the range of earth observations to the level of individual organisms, providing a link to ecosystem function and modeling in the context of rapid global changes. However, overcoming the differences in temporal and spatial scales between plant trait data and biogeochemical cycles remains a challenge. This session will address the role of plant species, biodiversity, acclimation and adaptation in the biogeochemical cycles of water, carbon, nitrogen and phosphorus. Conceptual, observational, experimental and modeling approaches, and studies from the local to the global scale, including e.g. remote sensing observations are welcome.
(link)

Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown

2018-05-02
__Cooperative interactions among species—mutualisms—are major sources of evolutionary innovation. However, despite their importance, two species that formerly cooperated sometimes cease their partnership. Why do mutualisms break down? We asked this question in the partnership between arbuscular mycorrhizal (AM) fungi and their plant hosts, one of the most ancient mutualisms. We analyze two potential trajectories toward evolutionary breakdown of their cooperation, symbiont switching and mutualism abandonment. We find evidence that plants stop interacting with AM fungi when they switch to other microbial mutualists or when they evolve alternative strategies to extract nutrients from the environment. Our results show vital cooperative interactions can be lost, but only if successful alternatives evolve. (Werner et al. 2018 PNAS)
(link)

Disclaimer Page calls: 325656 Gerhard Boenisch, Jens Kattge, created 2012-01-11, modified 2019-03-27